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network’s topology obtained for the yeast cell cycle data.

Background: The development of high-throughput omics technologies enabled genome-wide measurements of
the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology
discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and
interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction
networks and the identification of enriched functional categories. Still, the understanding of biological systems
requires a further level of analysis that addresses the characterization of the interaction between functional modules.

Results: We present a novel computational methodology to study the functional interconnections among the
molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements
and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed
by machine-learning methods to infer the relationships between these functional profiles. The result is a global,
interconnected network of pathways that represents the functional cross-talk within the molecular system. We
have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to
identify pathways that change their connectivity in a disease condition using an Alzheimer example.

Conclusions: PANA is a useful tool to deepen in our understanding of the functional interdependences that
operate within complex biological systems. We show the approach is algorithmically consistent and the inferred
network is well supported by the available functional data. The method allows the dissection of the molecular
basis of the functional connections and we describe the different regulatory mechanisms that explain the

Introduction

The analysis of genome-wide transcriptomics data has
changed in the last decade from a gene-centric vision,
which evaluated thousands of gene expression changes in
parallel, to a systems biology orientation where coordina-
tion among gene activities is pivotal. In light of this, data
is analyzed from the perspective that genes do not act as
independent entities, but as groups of cooperating mole-
cules that define the cellular state [1,2]. Functional
Enrichment [3] and Gene Set Enrichment Analysis
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(GSEA) [4], collectively denoted here as Enrichment
Analysis (EA), are the paradigm of such vision. The EA
relies on the definition of gene sets or pathways as blocks
of genes that either share a cellular role or are sequen-
tially connected to perform a given cellular function. EA
methods have been developed with different adaptations
to consider specific data structures such as regulatory
networks [5], time series measurements [6], SNP data [7]
or multifactorial designs [8], but they all attempt to iden-
tify gene sets whose global (de)activation is associated
with the phenotype. Pathway databases such as KEGG,
Reactome, BioCarta or the Gene Ontology host func-
tional data and provide the annotation framework to
define gene sets for enrichment analysis.
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EA methods implicitly work under two assumptions. On
the one hand, they consider that all genes in a gene set or
a pathway equally contribute to the activity of that path-
way; hence, the pathway is activated when a “sufficient”
number of gene members is activated. This consideration
does not take into account the differential regulatory fac-
tors that modulate each gene’s participation in the path-
way, such as different translation rates, enzymatic and
complex-association kinetics or the quite versatile regula-
tory capacity of genes. An example of this last type is the
heme biosynthesis pathway. This pathway involves eight
enzymatic steps to transform succynil-coA and glycine
into heme, the first being the synthesis of aminolevunilic
acid by ALAS (aminolevunilic acid synthase), which is the
committed step of the heme synthesis pathway and is
usually rate-limiting for the overall pathway [9]. Hence,
heme production is mostly controlled by ALAS regulation
and not by a majority of pathway members. Furthermore,
the variability in expression of human genes has been pre-
viously evaluated by our group across thousands of micro-
array experiments. The analysis demonstrated the
constant expression of certain gene sets and we proposed
a weighting scheme to account for the differential regula-
tion capacity of genes within pathways [10]. Moreover, we
have observed that gene regulation is associated with the
network properties of the gene. Genes with a high cluster
coefficient tend to show less pronounced variations at the
transcript levels than those genes with lower connectivity
[11] (Montaner, unpublished). All these examples illustrate
the heterogeneous regulation capacity of genes within one
pathway and their potentially differential contribution to
its regulation.

The second assumption of EA methods is that pathways
are generally considered as isolated boxes, and the interac-
tions between them are normally not explored. However,
pathways should be understood as a formalization of our
understanding of cell biology and hence their boundaries
are arbitrary or, actually, non-existing [12]. In fact, inter-
connections between genes and proteins go beyond path-
way definitions and are condition dependent. Formal
pathways may interact through either shared components
(for example, purine and pyrimidine biosynthetic pathways
share around 40 genes) or regulatory mechanisms (a path-
way output might regulate or interact with proteins in a
second pathway). Moreover, pathways may be connected
by interaction elements that have not been discovered yet;
for example, through regulation by non-coding RNAs
such as miRNAs [13,14].

There are some recent examples in the literature of
methodologies that analyze pathway interactions to
understand the cross-talk between the functional blocks
of a cellular system. Tools like ClueGO [15] and Enrich-
mentMap [16] display pathway connections by analyzing
the overlapping between their annotated genes. Li and
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Agarwal [17] constructed a Pathway Consensus Network
(PCN) from the physical interactions between proteins
belonging to different pathways and used this global
pathway interactome to map cancer genes in order to
understand the progression of this disease. Huang and
Li [18] extended this concept by incorporating gene
expression data to define active protein-protein interac-
tions and to identify phenotype-specific sub-pathway
networks. More recently, Kelder et a/ [19] obtained
additional links between pathways by searching for con-
necting paths that include not-yet-annotated proteins.
Dutta et al [20] used the connectivity information in
canonical pathway descriptions to identify study-relevant
pathways and to characterize dependencies and connec-
tions among pathways using gene expression data. Liu
et al [21] construct a pathway interaction network based
protein-protein interactions and cellular pathways,
which is applied to the identification of deregulated
pathways as subnetworks using gene expression data.

In general, these methodologies rely on the selection of
differentially expressed genes, enriched pathways and
protein-protein interactions. Therefore, when two path-
ways have few described protein interaction links, but
still functionally influence each other, their connection
might be missed by these methods [17]. In this work, we
present a novel approach to infer pathway interaction
networks from gene expression data that relies on a new
concept for understanding pathway activity and relation-
ships. This approach considers the activation pathway as
a coordinated and relevant change in the expression
levels of some of their genes over a number of samples.
Unlike EA methods, it does not explicitly require a
majority of pathway genes being activated, but that some
covariant expression profiles can be identified. The
method defines a pathway level gene expression signa-
ture, or profile, that globally represents the main tran-
scriptional regulation patterns within the pathway. Once
pathway profiles have been defined, these are used to
find connections between pathways. In this view, pathway
links do not either depend on previous knowledge about
protein-protein interactions or focus on identifying the
genes shared between pathways, as it is the case with cur-
rent pathway interaction approaches, but depend solely
on pathway expression profiles.

In previous work, we used dimension reduction tech-
niques to obtain pathway expression profiles, which are
associated with a physiological outcome [22]. This
reduction strategy has also been used in other scenarios
to obtain pathway activity indexes linked to the toxico-
logical properties of chemical compounds [23]. Pathway
connections were obtained by a machine-learning
method, which has been previously applied to identify
gene networks [24]. We use well-studied data in the
yeast cell cycle to demonstrate our methodology, discuss
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some relevant network links and provide guidelines to
help interpreting the results. Finally we include an
example of an Alzheimer gene expression dataset to
illustrate how our method can be effective in revealing
differential pathway connections associated to disease.

Results

The pathway network approach is numerically and
biologically consistent

Our PAthway Network Analysis approach (PANA) con-
sists of two basic steps (Figure 1). First, transcriptomics
data is mapped to a pathway database to generate a set of
gene expression submatrices, one per pathway, contain-
ing the expression values of the genes annotated to each
pathway. Principal component analysis (PCA) is then
applied to each submatrix to compress pathway informa-
tion into a reduced number of expression profiles that
characterize the pathways’ gene expression changes.
Numerically, these pathway profiles (PPs) are the scores
of the principal components (PC) of the PCA, which are
selected on the basis of a significance threshold alpha.
The second step consists of obtaining a set of association
rules that establish pair-wise connections between PPs.
Direct and opposite rules are extracted, representing
positive and negative correlation, respectively, between
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PPs. The quality value of the association rule is deter-
mined by its accuracy, which is basically a measure of the
predictive performance of a rule in terms of the sensitiv-
ity and specificity metrics, commonly used in machine
learning [25].

The performance of PANA approach was assessed
both in terms of the formal characteristics of the
inferred networks and in terms of functional consistency
by comparing results obtained for the yeast cell cycle
data against a database of yeast functional data.

Evaluation of PANA network properties

Simulated datasets

We used a simulated dataset to evaluate how different
pathway factors, namely the number of genes in the path-
way, the type of pathway profile and the percentage of
pathway inner correlation (defined as the percentage of
genes in the pathway that follow the main pathway pro-
file) would affect the network results. The simulated
dataset contained 24,990 genes and 36 samples. Pathways
were defined as blocks of genes of different size. Each
pathway was assigned a different simulated expression
profile (SEP) out of seven possibilities (Additional file 1,
Table S1) and also each pathway contained a different
percentage of correlated genes. Table 1 shows the
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Figure 1 Representation of the PANA algorithm. Given a database of gene annotations into pathways and a gene expression experiment, an
expression submatrix is generated per pathway by collecting the expression profiles of the genes annotated to each pathway. By applying PCA
and bootstrapping to the expression submatrices, the Pathway Level Matrix is computed where row represent Pathway Profile. Next, a list of
association rules between the pathway profiles is inferred by using GRNCOP. Finally, the pathway network is generated by selecting the rules
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Table 1 Experimental factors and levels used to design
the simulated datasets.

Factors Levels
Number of genes 10 60 100 140 200
Type of profile 1 2 3 4 5 6 7

Inner correlation percentage 0 02 04 05 06 07 08

experimental factors and levels used to design the simu-
lated datasets. In total, 245 different pathway designs
were obtained by the combination of the three experi-
mental factors and expression submatrices were gener-
ated for each of them using a multivariate normal
distribution. The coefficient s used for the definition of
the sigma parameter (the covariance matrix of this distri-
bution) represents the level of noise in the generated
data. The value of s was fixed in 0.01 for this experiment.
We evaluated the performance of the PANA algorithm as
a function its control parameters alpha, which modulates
the extraction of PPs, and accuracy, that controls the
identification of pathway links, and of the noise in the
dataset defined by s (Figure 2).

First, PANA results were obtained on the synthetic data
with a fixed s (0.01) value and varying levels of alpha and
accuracy. Figure 2A shows the correlation value between
PPs in extracted direct rules as a function of the PANA
control parameters (left axis) and the percentage of rules
that have pathways sharing the same SEP (right axis). As
expected, increasing accuracy and decreasing alpha
values associated with selected rules involving pathways
with increasing correlation. For example, at an accuracy
level of 0.9 and alpha of 0.05, the average correlation
value in rules was 0.95 and 76% of the links involved
pathways with the same SEP. In a second simulation
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experiment we evaluated the robustness of PANA to dif-
ferent noise levels. Figure 2B indicates that PANA finds
relative constant number of direct rules at different noise
levels (left axis), with slight decrease with s >= 0.1, and
also a constant percentage of direct rules involving path-
ways with the same SEP (right axis). Similar observations
were obtained when considering opposite rules (Addi-
tional file 1, Figure S1). From these results we concluded
that control parameters on PANA correctly capture the
correlation structure within the dataset and that the algo-
rithm is robust to different levels of noise in the data.

The yeast cell cycle network obtained by PANA

The yeast cell cycle gene expression dataset used in the
first experiment was published by Spellman et a/ [26].
This dataset contains microarray gene expression mea-
surements at 24 time points of the yeast cell cycle syn-
chronized by cdc15. We used this dataset to validate our
methodology since it describes a well-known cellular sys-
tem and there is extensive functional information avail-
able on yeast genes. The KEGG database was used as a
pathway annotation scheme, and 112 pathways associated
with the yeast genes were found.

Similarly to the results with the synthetic data, the
number of pathway links inferred by PANA decreased
with more restrictive alpha values and higher accuracy
thresholds (Additional file 1, Table S2). Next, we rea-
soned that if the PANA methodology truly captures the
functional links between pathways, the algorithm para-
meters will also control the biological consistency of the
generated network. In order to evaluate the functional
coherency of the different pathway network sets, the
functional annotation data contained in the YeastNet2
database [27] were employed. This database contains
102,803 functional associations among 5,483 yeast genes.
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Figure 2 Performance of PANA on synthetic data. A) Performance of control parameters. Average correlation among network pathway
profiles (left axis, red polygon) and percentage of links with same simulated expression profiles (right axis, blue polygon) as a function of the
accuracy threshold. The upper and lower border of polygons indicate the range of variation at different alpha values. Noise level was set at 0.01.
B) Robustness of PANA to experimental noise. Number of selected rules (left axis, red) and percentage of links with same simulated expression
profiles (right axis, blue) as a function of the noise in the data. Alpha was set to 0.01 and accuracy to 0.9.
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Each gene pair-wise relationship has an association score
(AS), which integrates the degree of evidence obtained
from the different types of data sources (gene co-citation
in text mining, protein-based functional linkages, micro-
array expression correlations, and so on) in a normalized
value. In our work, network validation was performed
according to two AS metrics: the integrated AS, or the
Bayesian AS (bAS) that uses a Bayesian method to inte-
grate functional evidences; the AS obtained exclusively
from microarray data, denoted here as the microarray AS
(mAS). From these AS metrics, and given any pair of
pathways i and j, the functional association strength
among these pathways (bASp;; or mASp;;) was calculated
in terms of the bAS and mAS of the pathway genes. A
more detailed explanation about the YeastNet2 data and
the method used for computing the bASp and mASp are
provided in the Methods section.

Figure 3 shows the relationship between the mean bASp
and mASp values of the inferred networks, denoted as
bASn and mASn respectively, and their alpha and accu-
racy values. The plot reveals that as the alpha value
decreases, the bASn of the identified pathway associations
increases; i.e., the functional support of the inferred net-
work is higher (Figure 3A). Regarding the accuracy para-
meter, the bASn increases from 0.70 to 0.90, where the
maximum value is reached. The fact that bASn decreases
in the highest accuracy range is a consequence of the
reduced network size at these levels. When accuracy
changes from 0.90 to 0.95, a few highly connected path-
ways drop, which has a major impact on the bASn of the
already sparse network. When the mASn is considered,
the relationship with the PANA parameters is similar, but
the maximum value is reached at 0.85 (Figure 3B). The
absolute values for mASn are lower as this index exclu-
sively uses evidence from the co-expression data.

Taken together, these results indicate that the two
main control parameters of the PANA algorithm (the
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alpha value for the component selection in the first step
and the accuracy value for rule inference in the second
step) work consistently and are efficient in deriving
pathway networks that are coherent with available biolo-
gical information. From the obtained results, we selected
the yeast cell cycle pathway network obtained with an
alpha value of 0.001 and an accuracy value of 0.90 for
further analysis. This network has been chosen because
it has the highest bASn value (92.37) and 252 associa-
tions. Therefore from this point onwards, any mention
of the yeast cell cycle PANA refers to this particular
network.

Functional significance of pathway links obtained by PANA
The yeast cell cycle PANA (YCCPN) is presented in
Figure 4. Additional information about YCCPN links,
such as bASp and mASp values, the number of genes of
the linked pathways, driving genes and other relevant
information is included in the website of the PANA pro-
ject at http://pathwaynetworkanalysis.org (see YCCPN
website section). Several tests were designed to determine
the relevance of the pathways associations inferred by the
method. First, we asked whether the pathway links within
the YCCPN provided greater functional evidence than
expected by chance. For this purpose, the universal set of
all possible yeast pathways associations and their bASp
values were computed from YeastNet2, resulting in 2,541
possible associations with a bASp higher than zero. In
Table 2, the distribution of the bASp values in the uni-
versal set and the YCCPN are presented in terms of
twelve different percentile values. From this table, it can
be concluded that approximately 70% of the rules
included in the YCCPN correspond to the first quartile
of the universal set of pathway associations. Moreover,
40% of the YCCPN rules correspond to the 90% percen-
tile of the universal set. Similar results were obtained
when the network was compared to the bASp values
obtained from randomly generated gene blocks of the
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Figure 4 The pathway network obtained from the yeast cdc15 dataset using an alpha value of 0.001 and an accuracy cutoff value
equal to 0.90. The pathway nodes filled with the same color belong to the same KEGG pathway category. The bASp values are shown on the
edges. Blue and red edges represent direct and opposite correlations, respectively. The thick links denote the pathway associations analyzed in
detail. This network can be interactively browsed at http://pathwaynetworkanalysis.org.

yeast genome (Additional file 1, Figure S2), indicating
that the association strength of the rules in the YCCPN
were significantly higher than what it would be obtained
by random pairing of pathways.

Subsequently, the reference ASp value distribution
analysis was repeated using the mAS values; i.e., the uni-
versal set of pathway associations integrated exclusively
of the links supported by microarray data, resulting in
1,350 potential associations among pathways. When the
mASp distribution was compared to the YCCPN mASp,
we observed that approximately 30% of the links with
the highest mASp values included in the network corre-
sponded to the 80% percentile of the universal set of

pathway associations. Moreover, we have evaluated the
number of rules with gene commonalities in the
YCCPN and found that 76.19% of the associations cor-
responded to pathways that had no genes in common,
indicating that the presence of shared genes between
pathways is not the underlying mechanism of the
inferred networks.

The conclusions of these analyses are two-fold. On the
one hand, we demonstrate that the YCCPN contains a
significant enrichment of pathway associations of strong
functional links according to available biological knowl-
edge. On the other hand, our approach, even when using
only gene expression data, is able to capture relationships

Table 2 Comparison of the percentile breakdown of the bASp and mASp distributions for the universal set of

pathways rules and YCCPN.

10% 20% 25% 30% 40% 50% 60% 70% 75% 80% 90% 100%
bUniv.S 1.28 203 240 2.89 441 6.51 9.70 15.10 19.09 2376 44.32 2360.29
bYCCPN 1.23 758 13.05 16.64 2246 31.66 44.30 64.07 80.19 115.05 180.06 2360.29
muUniv.S 143 1.56 1.66 1.78 208 3.28 4.07 6.14 7.07 8.98 16.70 13093
mYCCPN 0.00 0.00 0.00 0.00 0.00 1.53 3.89 8.45 11.23 15.72 2815 13093
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between pathways that are evidenced by other types of
functional information and cannot be found by univariate
co-expression analyses. This is supported by the fact that
this enrichment is higher when bAS -collecting multiple
sources of functional evidence- is considered instead of
mAS (only microarray data). This claim is also consistent
with the fact that the identified associations go beyond
the presence of shared genes between pathways.

Biological relevance of PANA results

We have demonstrated that the PANA approach unra-
vels a network of connections between pathways, and
that it is backed up by functional data. The next question
is how these links can be interpreted in terms of their
biological meaning. Our approach to this is the detailed
analysis of the molecular function of the pathway driving
genes. Driving genes are those genes that contribute the
most to the definition of the pathway signature can be
understood as fundamental pieces in their regulation (see
Methods). We hypothesized that these genes can reveal
the functional relationships between pathways and aid in
the interpretation of the pathway network links. To help
with this discussion, we refer readers to the PANA site
where a fully hyperlinked YCCPN can be browsed. For
notation purposes, driving gene names have been under-
lined in this section.

Cell cycle and DNA replication pathways

These two pathways are strongly associated (accuracy:
91.66%, bASp: 304.97) and conform a cluster to other
three DNA repair pathways. The connections between
these processes are well documented by the literature and
represent a suitable example to demonstrate the molecular
fundaments of the pathway links. They share six genes
corresponding to the MCM complex. However, none of
those were selected as driving genes. Instead CLBS6,
CDC45, MCD1 (sscl) and RAD53 included in Cell Cycle,
and POL30 and RFA1 annotated to the DNA Replication
pathway, were identified by minAS as major contributors
to the connected pathway profiles. Note that RADS53 is
annotated as DNA replication and DNA repair by other
databases such as Saccharomyces Genome Database.

The regulation in eukaryotic cell cycle occurs during
the transitions from the G1 to the S phase and from the
G2 to the M phase [28]. These regulatory transitions
strongly synchronize the cell cycle to DNA replication by
means of several check-point proteins. Several of these
proteins belong to the driving gene set of the cell cycle
pathway, which explains the high bASp obtained for this
pathway link. For example, CLB6 stabilizes the S phase
by promoting DNA replication while inhibiting other cell
cycle activities. CDC45 is an essential protein for the
initiation of DNA replication [29]. MCDI is present dur-
ing DNA replication and participates in the establish-
ment of sister chromatid cohesion [30]. MCDI is also
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required throughout the G2 and M phases to maintain
cohesion [31]. Finally, RAD53 encodes a kinase, which is
activated during DNA replication when DNA damage is
detected. This kinase slows down the replication rate to
promote DNA repair processes [32]. POL30 is the Prolif-
erating Cell Nuclear Antigen (PCNA), a protein that acts
as a processivity factor for DNA polymerase & in eukar-
yotic cells. In response to DNA damage, this protein is
ubiquitinated and involved in the RAD6-dependent DNA
repair pathway.

Recent studies have identified strong correlations
between genes POL30 and MCDI [33]. In particular, they
examined the expression of four genes (MCDI, POL30,
CLB2, and SUR?), whose periodic expression during the
yeast cell-division cycle is well established. From these
experiments, the POL30-MCD1 pair achieved a higher
level of correlation for synchronized (0.86) and unsynchro-
nized (0.75) samples, proving that the simultaneous
expression of both genes is an intrinsic feature of yeast
growth. Therefore, there is clear evidence for strong tem-
poral pattern matching between these driving genes. RFA 1
is a subunit of Replication Protein A Complex (RPA).
There is evidence for the regulatory action of RAD53 on
RPA during the early S phase [34], and also on other pro-
teins involved during DNA replication initiation. There-
fore, all these genes play an important role in the
synchronization between the cell cycle and the DNA repli-
cation process; hence their expression profiles are also clo-
sely matched. This is illustrated in Figure 5A, which
depicts gene expression data for the driving genes,
together with the pathway profiles of the Cell Cycle and
DNA Replication pathways. Both pathway profiles are
strongly correlated, like their driving genes, all of which
show maximum activity in the G1 and S phases.
Glycolysis/gluconeogenesis and oxidative phosphorylation
pathways
This association is an example of a negative relationship
between two pathways; i.e., basically, their pathway pro-
files are negatively correlated. However, the link has a
high bASp value (81.47) and an accuracy of 100%. No
genes are shared by the two pathways.

Eukaryotic cells produce energy in the form of ATP
molecules by two different pathways: via glycolysis and
by oxidation of glucose to ethanol or lactic acid. In parti-
cular, Cytochrome c-oxidase (COX), the terminal enzyme
of the mitochondrial respiratory chain (MRC), plays a key
role by regulating the rate-limiting step of respiration.
This regulation mechanism facilitates aerobic ATP pro-
duction. An analysis of the driving genes of the oxidative
phosphorylation pathway signature, COX12, COX13,
COX17, CYTI1, VMA4 and QCR6, reveals the important
roles of the genes associated with the cytochrome c-oxi-
dase complex and ATP production in the conformation
of the temporal profile of this pathway, indicating that
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Figure 5 Expression profiles of driving genes and pathways. A) PPs for Cell Cycle and DNA replication pathways and expression profiles of
CLB6, CDC45, MCD1 and RADS53 (Cell Cycle driving genes), POL30 and RFAT (DNA Replication driving genes). All the genes are overexpressed in
the G1 and the S phases simultaneously with DNA replication, and their activation patterns are consistent with their pathway temporal profiles.
B) Gene expression for driving genes of the Ubiquitin-mediated Proteolysis (SAF1) and Purine Metabolism (AAH1, CDC34, SKP1) pathways. The
SAFT gene shows an inverse correlation to the expression of the AAH1, CDC34 and SKPT genes.

COX activity and ATP synthesis are essential for the
interpretation of this signature.

On the other hand, it is well known that the glycolytic
flux is conditionally correlated with the ATP concentra-
tion in yeast. In particular, there is a strong negative
correlation between glycolytic flux and intracellular ATP
content; i.e., the higher the ATP content, the lower the
glycolysis rate. Moreover, glycolytic enzymes HXK2 and
ENOI drastically reduce with an increasing flux [35].
When considering the glycolysis/gluconeogenesis signa-
ture pathway, the negative loading values of enzymes
HXK2 and ENOI and the identification of several glu-
cose-repressed proteins as driving genes, such as ACSI,
GALIO and ALD3, suggest that this signature represents
a situation where the glycolysis pathway is active, but
reaching ATP saturation. This ATP concentration is
promoted, in part, by the activity of the Oxidative Phos-
phorylation pathway, as indicated for the driving genes
associated with COX and ATP syntheses. In other
words, the negative link between Glycolysis and Oxida-
tive Phosphorylation reflects the opposite involvement
of ATP concentration in both pathways: while ATP pro-
duction reflects the activity of the Oxidative Phospohor-
ylation pathway through the action of its driving genes,
high ATP levels down-regulate Glycolysis and modulate
the expression of glucose-related genes. Note that this
link is not explained by the presence of common genes
between the pathways or protein-protein interactions,
but by the action of a metabolic regulatory element.

Ubiquitin-mediated proteolysis and purine metabolism
pathways

The previous two examples represent connections
between pathways that are well established by the scienti-
fic literature. Here, we discuss a pathway association that
might not be so evident. The link between ubiquitin-
mediated proteolysis and the purine metabolism has a
bASp of 96.77 and an accuracy of 100%. Moreover in this
case, no genes are shared by the two pathways.

Several driving genes were identified for these linked
pathways. Specifically, we focus on the interaction and
activation patterns of SKP1 and CDC34 from the Ubiqui-
tin-mediated Proteolysis, and on AAH1, POL32, RPA34
and RPCI9 from the purine metabolism pathway. SKP1
is an evolutionarily conserved kinetochore protein that
forms part of multiple protein complexes, including the
SCF ubiquitin ligase complex. CDC34 is an ubiquitin-
conjugating enzyme (E2) and a catalytic subunit of the
SCF ubiquitin-protein ligase complex (together with
SKPI1, RBX1, CDC53, and an F-box protein), which regu-
lates cell cycle progression by targeting key substrates for
degradation. AAH1 is the adenine deaminase-encoding
gene and plays a central role in the salvage adenine path-
way. There is a well-known relationship between the
driving genes of the ubiquitin-mediated proteolysis and
AAH]1, which occurs during cell starvation. In response
to nutrient limitation, S.cerevisiae cells enter a non-pro-
liferating state termed quiescence. AAH1 is among the
most tightly regulated genes upon entry into quiescence.
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Escusa et al [36] showed that AAHI regulation at this
stage is conducted by the gene SAF1I, but its regulatory
role is dependent on genes SKPI and CDC34. Figure 5B
presents the expression pattern of both these driving
genes and SAFI, and reveals the negative correlation
between SAFI and AAHI, which is consistent with the
negative regulatory role of the former on the latter. We
postulate that this regulatory role of the ubiquitin-
mediated proteolysis genes on key Purine Metabolism
gene AAHI might not be restricted to the quiescence
process, but may operate during cell cycle progression,
thus explaining the link between these two pathways.

The other driving genes of the Purine Metabolism are
related with the synthesis, repair and degradation of
DNA and RNA. In particular, POL32 codifies a third sub-
unit of DNA polymerase 9, involved in chromosomal
DNA replication and required for error-prone DNA
synthesis in the presence of DNA damage. An association
between POL32 and the ubiquitin system occurs during
DNA replication and repair processes, where a small ubi-
quitin-related modifier (SUMO) and ubiquitin jointly
affect a key signal integrator at the replication fork,
PCNA [37,38]. Papouli et al [39] found that SUMO and
ubiquitin cooperatively control the choice of pathway for
the processing of DNA lesions during replication. This
interaction is mediated by the recruitment of helicase
SRS2 in order to inhibit DNA recombination; in particu-
lar, Pfander et al [40] presented evidence that POL32
SUMOylation is essential for the recruitment of this heli-
case. This result is concordant with other works [41,42],
which suggested that the SUMO modification of yeast
PCNA increases the activity of translesion DNA polymer-
ase and inhibits a recombination-dependent bypass
mechanism. Therefore, the overexpression of POL32 is
consistent with a simultaneous activity of the ubiquitin-
mediated proteolysis pathway.

PANA to unravel differential pathway connections in
disease

The yeast cell cycle analysis showed how PANA can
describe pathway interconnections along a time course of
events. In this section we evaluated how effective the
PANA approach would be in studying differential path-
way connectivity associated to a disease. For this, we
used two microarray datasets generated for the study of
Alzheimer Disease (AD). Both datasets were downloaded
from the Gene Expression Omnibus (GEO) database
http://www.ncbi.nlm.nih.gov/geo/ and were previously
used by Dutta el al [20] for the detection of pathways
associated with AD.

The first dataset (GEO ID: GDS810) [43], studied the
expression profile of genes from the hippocampal region
of the brain as a function of the progression of the disease
(incipient, moderate, and severe). The second dataset [44]
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explored the effect of AD in six different brain regions: the
entorhinal cortex, hippocampal field CA1, middle tem-
poral gyrus, posterior cingulate cortex, superior frontal
gyrus, and primary visual cortex (GEO ID: GSE5281).
Since different regions of the brain are involved in control-
ling different biological processes, this dataset can provide
insights into the tissue-specific activation of pathways. The
entorhinal cortex region samples were obtained from
patients in the early stages of AD, while the remaining
samples were obtained from patients in the later stages of
the disease. Dutta et al [20] specifically analyzed pathways
that have statistically significant association with the AD
pathway (KEGG hsa05010). The analysis focused on six
conditions (moderate and severe samples in the disease
progression dataset; and primary visual cortex, hippocam-
pal field CA1, middle temporal gyrus, and posterior cingu-
late cortex regions in the brain regions dataset), where the
AD pathway was found statistically enriched. Those path-
ways associated to the AD are at least 3 conditions were
selected as relevant associations.

We have applied PANA to the same set of conditions.
For the six cases, the pathway network corresponding to
the disease and control samples were computed and con-
trasted, and we asked which pathways most frequently
modify their association with the AD pathway when
switching from healthy to disease status. The analysis
revealed that PANA detects most frequent associations
reported by Dutta, but in some cases with a lower fre-
quency (Table 3). Notably, there were also new recurrent
associations inferred only by our method. All new asso-
ciations obtained by PANA that occur at least in three
experiments are listed in Table 4. The last two columns
contain the number of genes shared with the AD path-
way and literature references that support the new asso-
ciations [45-59].

A new rule is related with the Focal Adhesion pathway.
Alzheimer’s disease is a neurodegenerative disorder that
results from a loss of synaptic transmission and ulti-
mately cell death. The presenting pathology of AD
includes neuritic plaques composed of beta-amyloid pep-
tide (AB) and neurofibrillary tangles composed of hyper-
phosphorylated tau, with neuronal loss in specific brain
regions. In the other hand, focal adhesion proteins
assemble into intracellular complexes involved in integ-
rin-mediated communication between the extracellular
matrix and the actin cytoskeleton, regulating many cell
physiological processes including the cell cycle. Remark-
ably, recent studies report that integrins bind to AB
fibrils, mediating AP signal transmission from extracellu-
lar sites of AB deposits into the cell and ultimately to the
nucleus. In particular, Caltagarone et al [54] discuss how
the AP induced integrin/Focal Adhesion signaling path-
ways mediate in cell cycle activation and cell death dur-
ing AD progression. Other novel association occurs with
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Table 3 List of pathways more frequently associated with the AD pathway reported by Dutta et al [20].

Pathway KEGG id Shared Genes with AD pathway Detected by PANA?
Gap junction hsa04540 10 YES
GnRH signaling hsa04912 20 YES
Huntington’s disease hsa05016 99 NO
Adherens junction hsa04520 2 YES
Axon guidance hsa04360 11 YES
Dorso-ventral hsa04320 2 NO
Insulin signaling hsa04910 10 YES
Long-term depression hsa04730 1 YES
Long-term potentiation hsa04720 29 YES
Neurotrophin signaling hsa04722 12 YES
Oocyte meiosis hsa04114 18 YES
Pathways in cancer hsa05200 11 YES
Ubiquitin mediated proteolysis hsa04120 0 NO

For comparison purpose, the third column shows the shared genes with the AD pathway and the fourth column indicates which associations are also detected

by PANA.

the Peroxisome pathway. In Alzheimer’s disease lipid
alterations are present early during disease progression.
Some of these alterations point towards a peroxisomal
dysfunction. Peroxisomes are present in all nucleated
human cells, including all cell types of the brain, and per-
form anabolic and catabolic functions and play a major
role in generation and decomposition of plasmalogens
and docosahexaenoic acid. The levels of both of these
lipids are decreased in brains of patients suffering from a
generalized peroxisome biogenesis deficiency (Zellweger
syndrome spectrum) and in AD. In particular, Kou et al
[50] observed that the decrease in plasmalogens and the
increase in VLCFA (very long-chain fatty acids) and per-
oxisomal volume density in neuronal somata showed a
stronger association with neurofibrillary tangles than
with neuritic plaques. Therefore, these results indicate
substantial peroxisome-related alterations in AD, which
may contribute to the progression of AD pathology.
Another example is the link with the VEGF (vascular
endothelial growth factor) pathway. VEGF, a critical
mediator of angiogenesis, is present in the AD brain in
the walls of intra-parenchymal vessels, in diffuse perivas-
cular deposits, and in clusters of reactive astrocytes. In

addition, intrathecal levels of VEGF in AD are related to
clinical severity and intrathecal levels of amyloid-beta
(AB). Emerging data support the idea that factors and
processes characteristic of angiogenesis are found in the
AD brain [52]. Rosenstein et al [53] also discuss about
the role of VEGF in the perfusion deficits related with
neurodegenerative disorders, such as Alzheimer and
Huntington diseases, suggesting that problems in vascu-
lar tone regulation contributes to the pathogenesis of
these disorders.

Interestingly, and as mentioned before, PANA was
able to detect associations between pathways that only
share few genes or even none (i.e. Peroxisome and AD
pathways do not share genes). This contrasts with Dut-
ta’s results where the median number of shared genes
linked to the AD pathway is 11. For PANA new rules
this number drops to 3. This result is a direct conse-
quence of fundamental differences between both algo-
rithms. Dutta’s method is oriented towards the
topological information of the pathways (where the
shared genes play a central role), whereas our methodol-
ogy connects pathways based on their shared activity
profiles. Still, the literature survey returns evidence of

Table 4 Pathways associated with the AD pathway obtained exclusively by PANA method.

Frequency  Pathway KEGG id  Shared genes with AD pathway Literature evidence

4 Citrate cycle (TCA cycle) hsa00020 4 [46]

4 Pyruvate Metabolism hsa00620 0 [4748)

3 MAPK signaling hsa04010 19 [49,50]

3 Peroxisome hsa04146 0 [51,52]

3 VEGF signaling hsa04370 11 [53,54]

3 Focal adhesion hsa04510 5 [55]

3 Aldosterone-regulated sodium reabsorption hsa04960 2 [56,57]

3 Carbohydrate digestion and absorption hsa04973 2 [58,50,60]

Only those rules that occur at least in three experiments are listed.
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functional connections between AD and these pathways
as discussed before.

Discussion

Understanding the complexity of molecular interactions in
a cellular system is one of the most challenging aspects of
current genomics research. Many analysis approaches
have been developed in recent years and have attempted
to exploit functional information and multivariate analyses
to provide answers about molecular systems functioning.
These approaches rely on the systems biology concept;
hence they analyze the collective behavior of groups of
genes. In this work, we take one step forward by present-
ing a methodology that not only studies blocks of genes
jointly, but also establishes relationships between these
blocks. The result is a global, interconnected view of the
system’s transcriptional status.

There are some substantial differences between the
PANA approach and most functional Enrichment Analysis
methods. Probably, the most relevant one is the way that
PANA extracts information from the gene set (or func-
tional block). while the EA methods typically rely on identi-
fying a significant majority of gene set members associated
with the phenotype and consider all the genes equally con-
tributing to the block’s functionality, PANA is built upon
the analysis of the correlation structure within the group of
functionally related genes (for example, by forming part of
a same sub-pathway, as exemplified in this work).

Both the covariation analysis and the feature extrac-
tion algorithm imply that the functional block hosts a
level of transcriptional variation which is above a given
noise threshold (see Methods) and that this might be
concentrated in a subset of pathway genes. This proce-
dure is able to address situations where pathways are
roughly defined, include genes that are not necessarily
co-expressed or when the regulation of the pathway is
concentrated in a low number of switch genes. For
example, the KEGG Purine Metabolism pathway (PMP)
in yeast, present in our YCCPN results, includes reac-
tions involving purine nucleotides and it branches out
to histidine and thiamine metabolisms, sulfur assimila-
tion and allantoin degradation pathways, among others.
These other sub-pathways are not particularly seen as
being highly regulated in our analysis. Additionally,
ADE4, the first committed step in purine biosynthesis
by catalyzing the reaction of PRPP, water and glutamine
to 5’phosphoribosylamine, is identified as a driving gene
in our analysis. ADE4 overexpression, but not the activ-
ity of other ADE genes, was found to increase purine
biosynthesis in yeast [60]. PANA results are in agree-
ment with these prominent regulatory roles of some
pathway genes.

Another differential characteristic of the PANA
approach is that the links between pathways do not
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derive from shared components or protein-protein inter-
action data, but exclusively from a co-transcriptional
analysis. Co-expression has been largely used to infer
gene regulatory networks [61-63], but these approaches
normally ignore the participation of the genes in path-
ways and hence are limited in providing a global func-
tional interpretation of the results [64]. This is the case
of popular approaches such as WGCNA [65] -targeted
to create scale-free networks from gene co-expression
analysis- and GeneMANIA [66], focused in the integra-
tion of multiple gene association networks. We have
shown that YCCPN connections are supported by func-
tional evidence that goes beyond the gene expression
data contained in the YeastNet2 database, and hypothe-
sized that the pathway-centered multivariate analysis
basis of our approach might be more robust in identify-
ing functional transcriptional connections than pair-wise
gene expression analyses. We have also shown in two
examples that these transcriptional links can be
explained by the action of molecular features that are
not part of the connected pathways themselves. Such is
the case of the Glycolysis/Gluconeogenesis and Oxida-
tive Phosphorylation Pathways, which are regulated by
ATP levels, and the Ubiquitin-mediated Proteolysis and
Purine Metabolism Pathways, which are connected by
the regulation of the SAFI protein. This is an interesting
property because it makes the approach amenable for
application in situations of insufficient or misplaced
pathway database annotation or when common regula-
tory elements are not proteins.

An unique PANA feature is the possibility of presenting
different aspects of pathway behavior when the dimension
reduction step results in multiple principal components
being selected as pathway profiles. Each one can establish
links with different pathways. For example, the Cell Cycle
pathway is represented in the YCCPN by three profiles
corresponding to principal component one, two and four
of the PCA of the Cell Cycle gene expression matrix. Cell
cycle_1 collects most of the canonical controllers of cell
cycle progression and is linked to several DNA processing
pathways, as discussed in the Results section. However,
Cell cycle_4 presents a profile of activation at late time
points of the yeast experiment. This profile is connected
to the Glycine, Serine and Threonine Metabolism path-
ways, and indirectly to the Galactose Metabolism pathway
(Figure 5). One of the driving genes of Cell Cycle_4 is
PHOS85, which negatively controls the expression of
numerous genes induced under nutrient limitation condi-
tions [67]. One of these repressed genes is UGP1, which
catalyzes the reversible formation of UDP-Glc, a source
compound in glycogen and trehalose biosynthesis. In our
analysis, UGPI is the driving gene of the Galactose Meta-
bolism pathway and is negatively correlated with PHOS85.
Moreover, two driving genes in the Glycine, Serine and
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Threonine Metabolism pathways, GCV2 and CHAI, are
related to nitrogen utilization under nutrient-limiting con-
ditions. Hence the fourth profile of the Cell Cycle pathway
might witness the coordination of this pathway with the
nutritional state of the yeast cell.

Another interesting application of PANA is to unravel
changes in pathway connectivity that associate to a given
phenotype. This is relevant not only to understand the
new functional status acquired in a disease situation, but
also to explore possible side effects of treatments. Meth-
ods for differential molecular wiring have been described
at the gene level [68,69] and have shown that differences
in gene co-expression patterns rather than absolute
expression level differences can determine phenotypic
differences. In the Alzheimer dataset example we extend
this concept to the pathway level and show that, by com-
paring the pathway network of healthy versus diseased
individuals we can spot pathway connections that consis-
tently change in Alzheimer patients. Some of these new
connections can be detected by methods based on shared
protein components but many other relevant ones were
only found by our methodology.

PANA was developed in the microarray analysis context,
but can be extended to other high-throughput methodolo-
gies provided that a functional database is available for fea-
ture annotation. The adaptative association rule algorithm,
used for network construction, recommends evaluating
the expression along a sufficient number of samples. This
might preclude the utilization of this approach in reduced
sample size experiments, but does not restrict the method
to time series data. Besides, case control studies and multi-
factorial designs are potential experimental set-ups for
PANA. On the other hand, the dimension reduction tech-
nique used in the first algorithm step, PCA, analyzes cov-
ariation across the entire data matrix. Other multivariate
analysis approaches, such as biclustering or spectral ana-
lyses, might extend the possibilities of the method to iden-
tify the pathway profiles associated with a restricted
number of samples and to fine-tune the network analysis
to specific conditions within the experimental design.

In summary, we propose a novel method for the inter-
pretational analysis of high-throughput data in systems
biology research. This approach not only offers global
views of the interconnections among the different func-
tional blocks of the system, but also allows focusing on
these links to reach the molecular basis of the network.
We believe PANA is a useful tool to improve our under-
standing of the functional interdependencies that operate
within complex biological systems.

Methods

The PANA algorithm

The proposed approach relies on the combination of
dimensionality reduction methods with machine-learning
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techniques. Given a gene expression experiment and an
annotation scheme for genes in pathways or functional
modules, this method creates a gene expression subma-
trix for each pathway and uses a Principal Component
Analysis (PCA) to reduce the dimensionality of the path-
way expression data [22]. Each pathway will be repre-
sented by one or a few pathway signatures or pathway
profile (PP), which collect most of the gene expression
variation within the pathway and represent the pathway
activity changes along the experiment. These PPs are
used as input data to derive adaptive association rules
based on mutual information maximization [24]. These
rules can be seen as the covariation relationship between
PPs and can be represented in the form of a network of
pathway interactions with direct and opposite links
depending on the direction of the rule. Hence, the net-
work inference methodology consists of two main phases;
pathway compression and association rule inference,
which are described below.

Phase 1: Pathway compression

Given a transcriptomics experiment, let X be the expres-
sion data matrix of dimension N x M, where N is the
number of genes measured and M is the total number of
samples. Let x,, #:1 ... N, m:1 ... M be the expression
value of gene # in sample m. Let F be the set of functional
annotation (pathways) of the genes in the transcriptomic
dataset. Let Ny be the number of genes associated with
each pathway f € F.

1. For each fe F, create the expression submatrix of
X, X¢, with the Nyrows corresponding to the genes asso-
ciated with pathway fand with the same M columns as X.
Obtain X;° as the transposed, column-mean centered
transformation of Xg.

2. For each pathway f, obtain a number of pathway
signatures /15 by applying a Principal Component Analy-
sis- (PCA) based procedure that uses bootstrapping to
obtain pathway signatures with a given confidence
alpha according to the following procedure:

a) Given the original expression matrix X with M
columns, sample M columns with replacement to
obtain X". Use X" to calculate the variance of each
gene. Approximate the gene variance distribution by
a Gamma distribution as described [70] and obtain a
gamma cutoff value as the 1-alpha percentile value
of this distribution.

b) Apply PCA to each bootstrap pathway submatrix
X" and select the principal components (PC) with
variance (eigenvalues) higher than the gamma cutoff.
Let PCy, PC,, ..., PCy() the selected PCs for matrix
X¢, where 1 < k(r) < rank(X¢").

¢) Repeat 3 and 4 R times. Let H; be the set of all
the selected PCs in the R repetitions: H¢ = {I,..., k(1),
1,..., k(2), ..., 1,..., k(R)}. Hence, each i€H; has a
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frequency gy. Select ieH¢ with frequency gy higher
than a Q threshold (typically 95%) as the number &
of pathway signatures for pathway f.

3. Given the /i principal components selected using
the criterion described above, the PCA decomposition
of submatrix X can be written as: X = T¢P¢* + E,
where Ty is the scores matrix for pathway f (with dimen-
sions M x hy), P¢ is the loadings matrix for pathway f
(with dimensions Ny x /g and E is an error term. The
scores matrix T¢ represents the /iy pathway signatures
for pathway f. These new /iy functional variables repre-
sent the coordinative expression patterns of the genes
associated with pathway f. P¢ collects the contribution of
each gene to each pathway signature.

4. Create a pathway level matrix (PLM) through the
row-wise concatenation of the Ty scores matrices of all
the pathways with at least one selected pathway signa-
ture. Hence, all the pathway signatures selected during
Step 5 are included in the PLM, which has Yp /s rows
and M columns.

Phase 1 is depicted in Figure 6.

Phase 2: Inference of association rules

1. For each pathway signature, make an adaptive discreti-
zation of PLM into two states: high and low activity levels
of the pathway signature, represented by values 1 and -1,
respectively. For example, a relative high PCA score for a
sample in a pathway signature means that the group of
genes associated with this pathway are, in general, over-
expressed in that sample. An adaptive method based on
the partition entropy metric, typically used in Informa-
tion Theory, is employed for data discretization [24]. The
discretization procedure works as follows: discretization
of the PLM is computed per pathway signature j (row j
of matrix PLM). The discretized matrix obtained for the
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PLM and pathway signature j (PLM;) is denoted as
OPLM;. For the computation of 8PLM,; a set of discretiza-
tion thresholds (#;) for each signature pathway / (PLM,),
with [ # j, is calculated in relation to PLM;. The algo-
rithm for computing #; considers each score value shown
by the pathway signature PLM]j as a candidate threshold
t.. Therefore, for each possible £, value, the sample set
PLM, is partitioned into two subsets, namely S_; and S;.
S_1 contains all the samples where PLM, has a score
value that is less than or equal to £, whereas S; contains
all the samples where PLM, has a score value that is
greater than £.. In other words, S_; and S; represent sam-
ple sets (columns of the PLM) where PLM, has low and
high activity levels, respectively, on the basis of £.. Next,
calculate the partition entropy, which is a statistical indi-
cator of the quality of threshold £, as a discretization
value for PLM; in relation to the discretization of PLM;.
The partition entropy is computed from the discretized
values of rows PLM, and PLM;, where PLM, is discre-
tized using £, while PLM; is discretized using its average
score value. In numerical terms, the value returned by
this metric is a real number between 0 and 1. When the
partition entropy value associated with a discretization
approximates 0, the threshold £, that generates this dis-
cretization represents a better solution. Consequently,
the £, that minimizes the partition entropy is selected as
t;, Details about the equations for the computation of the
entropy and partition entropy metrics can be found in
Mitchel [71] and Kohani [72], respectively.

2. Extract the association rules from the discretized
matrix by detecting covariation between pairs of path-
way signatures. The rules inference procedure is applied
to each dPLM; in order to determine which pathway
signatures are linked with pathway signature j (PLM;).
This task is carried out by a classifier optimization
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method [24], which infers association rules and their
accuracy values. In mathematical terms, the classifiers
are computed as solvers of the following combinatorial
optimization problem:

k
| maxo (), 6 PLM))
P ;EeP

Where:

+ k = number of pathway signatures in PLM (k = Xz 1)

« P is the space of all the vectors v of dimension &, so
that v; represents a class of association rule Vi, i = 1 ... k,

+ 8PLM; is the discretization of the PLM for pathway
signature j,

» j € P is a classifier of all the rules with an incidence
on pathway signature j,

+ (7)), 8PLM,; is a performance function that evaluates
the accuracy of 7j a classifier obtained from the dPLM;
data,

Therefore, per each pathway j, the inference method
obtains the pathways linked with j by solving this opti-
mization problem by combinatorial analysis. Rule accu-
racy is computed for the ¢ function in terms of the
well-known sensitivity and specificity metrics by using
the equation proposed by Carballo and Freitas [25].
Therefore, those rules with accuracy values above a pre-
defined threshold are selected for the network construc-
tion. The resulting network represents the relationships
between pathway signatures and has directionality. The
direction of a network link represents the direction in
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which the association rule holds and indicates logical
causality.
Phase 2 is schematized in Figure 7.

Determination of driving genes

In order to better interpret the associations between
pathways, we propose to determine which genes contri-
bute most to create the pathway profile (PP). As PPs are
modeled by PCA, loadings represent the contribution of
each gene to the definition of the PP. Genes with low
loadings are poorly correlated with the pathway profile,
while those with high loadings are highly correlated.
Frequently, a subset of pathway genes can be identified
as being mainly responsible for the definition of the PC.
We will refer to these genes as driving genes as they are
“pulling” the pathway signatures for having the greatest
weights in the PC.

To identify driving genes, PANA uses the minAS
method [70], which is an algorithmic strategy to classify
features according to the values of a statistic that mea-
sures the importance of those features in the model. In
our case, the model is a PCA and the statistics are the
gene loadings. Usually, in PCA models, each PC is
defined by a relatively low number of variables while
most of the variables will have loadings close to zero.
Accordingly, minAS works under the assumption that
the distribution of the statistic is at least bimodal: it fol-
lows a mixed distribution with at least two components.
The first component (typically with the highest mode) is
associated with variables with a negligible value of the
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statistic which are normally of no interest, while the rest
of components correspond to variables where the statis-
tic has high values. minAS obtains a cutoff value that
separates the first component from the rest by firstly
estimating the density function of the statistic with a
Kernel Density Estimator and by then computing the
point where the first local minimum is reached. Hence
this cutoff is not arbitrary, but consistent with the infor-
mation contained in the data [70]. Those genes with
absolute loading values higher than the minAS cutoff
will be selected as the driving genes of each pathway
profile.

Yeast Cell Cycle dataset

The microarray data used for the inference of yeast cell
cycle PANA (YCCPN) were published by Spellman et al
[26]. These expression values were obtained for S. cerevisiae
cell cultures, which were synchronized by three different
methods: the cdc15, cdc28 and alpha factors. The data-
transformation method used by Spellman et al returned
background-corrected signal log ratios, with control as an
average expression level extracted from asynchronous cul-
tures of the same cells growing exponentially at the same
temperature in the same medium. For this work, the cdc15
experiment was selected as the benchmarking dataset for
the generation of YCCPN because it contains the largest
number of data points (24 samples), thus providing the lar-
gest number of instances for the machine-learning method.
In this time series, cell cycle progression was blocked at a
specific point by conditional factor CDC15 which, if
removed, permits cells to recommence progression through
the cell cycle in a synchronous fashion.

Yeast Cell Cycle PANA Network validation

To validate YCCPN, the functional annotation data con-
tained in YeastNet2 [27] were used. Approximately
1800000 individual experimental observations were inte-
grated into YeastNet2 from ten different types of func-
tional genomics, proteomics and comparative genomics
datasets by optimizing a total of ~155 free parameters
to construct the whole network.

YeastNet2 contains a total of 102803 links covering 5483
yeast proteins, this which represents 95% of the validated
yeast proteome and provides an association score (AS) for
each pair-wise gene relationship. AS values are obtained
from each kind of experimental evidence separately (i.e,
gene co-citation in text mining, protein-based functional
linkages, microarray expression correlations, etc) and
jointly combining, following a Bayesian method, different
evidence AS into an unique AS value per gene association.

In our work, network validation was performed
according these two AS metrics: the integrated AS
value, named Bayesian AS (bAS) represents the amount
of scientific evidence of a putative pathway association
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by taking into account all the biological data sources,
and the AS value obtained from microarray evidence
exclusively, named Microarray AS (mAS). From both AS
metrics, and given a pair of pathways i and j, the func-
tional association strength between these two pathways
(bASp;; or mASp;;) was computed as the sum of the
functional association scores of all the gene pairs which
can be established between these pathways. Moreover, a
mean bAS and mAS value for each network were calcu-
lated as the average bASp and mASp values, respec-
tively, of its pathway associations. Although ASp is a
summing-up value, there was no correlation between
the magnitude of ASp and the size of the pathway
involved (Additional file 1, Figure S3).

The PANA project website
The YCCPN described in this paper can be visualized
and explored on the project web site at http://pathway-
networkanalysis.org. On this web site, some fundamental
definitions - such as a pathway signature and driving
gene concepts - are enunciated, and the pathway network
is depicted in a web-navigable format. The YCCPN figure
includes zooming capabilities to improve dynamic visua-
lization. Each network node -pathway signature- is linked
to a gene expression painted image of the pathway
obtained with the Paintomics tool [73], which has further
links to the KEGG data. These images also highlight the
driving genes by bold-lined boxes. These boxes usually
have more than one associated gene. For this reason, a
pop-up window is displayed for each box, where the driv-
ing genes are denoted by blue filled squares. The network
edges discussed in this paper are indicated by thick lines
with hyperlinks to a text document explaining the biolo-
gical background of the association.

The pathway signatures of YCCPN are also available as
a pdf file in the section Additional Information. In this
document, three plots are included for each pathway sig-
nature: the pathway signature profile, the loading value
curve (with an identification of the gene with the highest
loading value), and the temporal profile that corresponds
to this gene. This information is useful for understanding
the direction of the principal component which repre-
sents the signature pathway. Finally, the annotation of
samples at cell cycle phases can be found in the section
Additional Information. In particular, the cdcl5 dataset
contains 24 samples obtained during 300 minutes [74].

Additional material

Additional file 1: Figure S1. Performance of control parameters for
opposite rules. Average correlation among Pathway Profiles of opposite
rules (left axis, red polygon) and percentage of opposite links with same
simulated expression profile SEP (right axis, blue polygon) in the resulting
network, as a function of the accuracy threshold. The upper and lower
border of polygons indicate the range of variation at different alpha values.
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Noise level was set at 0.01. Figure S2. Association score enrichment
against random pathways. For each pathway association rule R present in
the YCCPN, a total of 100 random pathway associations with the same
cardinality pattern as R were generated, the ASp values computed and the
percentile position of the ASp of R in its reference distribution was
obtained. The cardinality pattern of a rule is defined by three values: the
amount of genes contained in each pathway linked by the rule, and the
number of shared genes between both pathways. This analysis revealed
that most (63% of the links) of the rules obtained by the PANA method are
located in the 20% percentile of the 100 random trials of their gene
cardinality pattern. In particular, the average bASn of network integrated by
the random links is low (28.50) in comparison with the bASn of the YCCPN
(123.61). The difference between YCCPN bASn and the random bASh was
statistically significant (t-test p-value < 0.05). Figure S3. Independence of
the ASp score of the pathway size. Relationship between pathway
association scores (bASp and mASp values) and the number of genes in the
left (dot) and right (cross) pathways. Lack of correlation is observed in all
cases. Table S1. Simulated expression profiles (SEP). Temporal
expression patterns defined for the generation of simulated time series for
the artificial pathways. Table S2. Network size (number of pathway
associations) inferred using different accuracy and alpha values in the
Yeast Cell Cycle network obtained by PANA.
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